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Bayesian updating and other techniques require matrices of correlation coefficients between mul-
tiple variables.  Often, there are different numbers of paired data available for each entry.  This 
almost always leads to a correlation matrix that is not positive definite.  Sometimes, the correla-
tion matrix is positive definite, but it leads to unstable weights applied to highly redundant data.  
This paper proposes an iterative scheme for correcting the correlation matrix.  The changes are 
constrained by the number of data used to calculate the correlation and how sensitive the matrix 
is to changing a specific correlation.  The result is a stable matrix that can be used for combining 
the secondary data. 

Introduction 

Many geostatisticians are faced with the problem of how to use multiple secondary variables for 
building their models.  Most algorithms are coded to use one secondary variable.  A method was 
developed here at the CCG for combining multiple secondary variables into one “super-
secondary” variable [1]. 

The merging is done under a multivariate Gaussian framework.  All of the variables are normal 
score transformed and then correlation matrix is calculated on the normal score values.  The cor-
relation matrix, between the primary and secondary variables, is used as the basis for the merging 
process.  The advantage of this method is that the secondary variables are merged using a full 
model of redundancy.  This redundancy model accounts for the relationship between the primary 
and secondary variables, as well as the redundancy between the secondary variables.  

Merging the secondary variable relies completely on the correlation matrix.  It is analogous to 
kriging’s dependence on the covariance matrix.  The correlation matrix must be positive definite 
for the merging process to complete successfully.  When all of the data are homotopically sam-
pled, i.e. every attribute is available at every location, there will be no problems.  The correlation 
matrix is guaranteed to be positive definite.  When the data are not homotopically sampled, the 
correlation matrix may or may not be positive definite. 

There are many reasons that the sampling could not be homotopic.  Cost of the samples, changes 
in the sampling protocol or bad samples are just a few of the reasons.  When faced with limited 
samples for some variables, there are two choices that can be made: (1) use the small homotopic 
subset, or (2) use as many samples as possible between variable pairs.  Consider a small three 
variable example with 100 locations.  Variables 1 and 2 have been assayed at all 100 locations 
and variable 3 has only been sampled at 10 locations.  Here is where we have to make the deci-
sion to use the subset of 10 samples and get a correlation matrix that is positive definite, or use a 
different number of samples for each variable.  Using a different number of samples increases the 
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reliability of the calculated correlations, but it may also cause the correlation matrix to not be 
positive definite. 

Most projects have enough samples that they can reliably use the subset of homotopic samples.  
However, some projects have very few samples for some of their critical variables.  In these cases 
it is necessary to use a different number of samples for each variable pair.  In these cases the cor-
relation matrix may not be positive definite. 

This paper proposes an iterative method for changing the correlation matrix to make it positive 
definite.  The goal is to change as few of the terms as possible to make the matrix positive defi-
nite. 

Methodology 

We used an iterative scheme for correcting the correlation matrix.  The goal of the correction is to 
make the matrix positive definite without making unnecessary changes to the correlation coeffi-
cients.  Some aspects that will be considered are: (1) choosing which correlation in the matrix to 
change, (2) the number of samples used for calculating the correlation, (3) the sensitivity that a 
specific correlation has on the matrix, (4) the amount to change the correlation, and (5) the maxi-
mum weights that are calculated using the matrix.  The above points will be discussed below. 

Point 1: All of the nodes in the correlation matrix have an equal probability of being selected.  
The only nodes that are not allowed to change are the direct correlations; they are fixed to a value 
of one.   

Point 2: The number of samples is the only indication available for the reliability of the correla-
tion coefficient.  As the number of samples increases, the correlation becomes more and more 
stable.  This is accounted for in the matrix correction through a calibration factor. 

The calibration factor allows all of the correlations to be changed.  It just limits the amount of the 
change based on the number of samples.  A simple function is used for calculating the maximum 
change allowed given the number of pairs.  The function is: 

 ( ) 1.0 0.9 , if 100
, 100

0.1, if 100

nsamp nsamp
CorrFact ix iy

nsamp

⎧ − ⋅ ≤⎪= ⎨
⎪ >⎩

 (1) 

This results in correlations with a small number of pairs having larger changes then correlations 
that have a large number of pairs.  The threshold of 100 was chosen subjectively. 

Point 3: Each element of the correlation matrix has a different impact on the matrix.  Some ele-
ments will indefinitely be more important for the matrix correction.  A simple iterative scheme is 
used to calculate the matrix sensitivities. 

The initial Eigen values are calculated with the input matrix.  Then, each element in the matrix is 
changed by a small amount.  After changing the correlation, the Eigen values are recalculated.  
The difference in the minimum Eigen value, before and after the change, is calculated.  This is 
repeated twice at each node.  Once when the correlation is increased by 0.01 and then decreased 
by -0.01.  The average absolute difference is used as the sensitivity value.   

 ( ) ( )( ) ( )( ), 0.01 , 0.01
1,
2 i iix iy ix iysens ix iy abs eig eig abs eig eigρ ρ+ −
⎡ ⎤= − + −⎣ ⎦  (2) 
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Where eigi is the minimum initial Eigen value and eig is the minimum Eigen value for a small 
change in the correlation. 

Point 4: The iterative change made to the correlation matrix is a function of a random number, 
the number of samples used to calculate the correlation, and the sensitivity for that particular cor-
relation.  The change to the correlation is calculated as: 

 ( ) ( ) ( )= R-0.5 , , 0.005sens ix iy CorrFact ix iyρΔ ⋅ ⋅ ⋅  (3) 

where R is a uniform random number between zero and one.  Therefore, the maximum delta that 
could be applied for one iteration is 0.005.  

Point 5: The last consideration is the weights that are calculated from the fixed matrix. Recall 
that a simple kriging system is used to determine the weights for combining the secondary data.  
Large weights, although theoretically correct, can cause major problems when combining the 
secondary data.  The weights are not accounted for in the optimization process.  The final weights 
are calculated after the matrix has been corrected.  It is up to the user to ensure that the resulting 
weights are reasonable.  A simple check is done in the program.  A warning is written to the 
screen if the maximum weight is great than 0.9. 

A maximum descent approach is used for fixing the correlation matrix.  This was chosen over a 
more complex optimization method.  A more complex method will not produce a better matrix.  
But it would increase the amount of time it takes the program to run.  The outline of the program 
workflow is: 

1. Calculate the initial Eigen values for the input correlation matrix, 

2. If the minimum Eigen value is greater than specified, go to 11, 

3. Randomly select a correlation coefficient to change,  

4. Draw a random number R, 

5. Calculate the change to the correlation coefficient for the selected location, 

6. Update the correlation matrix, 

7. Calculate the Eigen values for the updated matrix, 

8. If the minimum Eigen value is greater than specified, go to 11, 

9. If the minimum Eigen value has increased, keep the change and go back to 3, 

10. If the minimum Eigen value has decreased, reverse the change and go back to 3, 

11. Calculate the weights for combining the secondary variables, 

12. Write a warning if the maximum weight is greater than 1.0, 

13. Exit the program. 

The output file appends three columns of information to the input file: (1) the fixed correlation 
matrix, (2) the delta between the initial and the corrected correlation matrices, and (3) the correla-
tion sensitivity. 
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Example 

An example was taken from a coal-bed methane data set.  There are 14 variables in total.  Of the 
14 variables, 4 are primary variables that will be predicted using the remaining 10 variables as 
secondary data.  Table 1 lists the number of samples for each data variable.  The first four vari-
ables are the primary variables. 

Table 1:  Number of samples for the different variables. 

Variable Number of Samples 
Spinner Flow 85 

Surface Pressure 74 
21 day Flow 66 

21 day Pressure 66 
Top 101 
Base 105 
Gross 101 

Net Thickness 105 
Number of Intersects 105 
Average Thickness 105 
Initial Gas Content 21 

Initial Density 21 
Langmuir Pressure 3 
Reservoir Pressure 35 

 
Since there are a variable number of samples, we will not use a homotopic subset for calculating 
the correlation matrix.  This may result in a correlation matrix that is not positive-definite.  Figure 
1 shows the initial correlation matrix and the number of data used for the calculation.   

The initial matrix is not positive-definite.  This was checked by calculating the Eigen values for 
the matrix.  The minimum Eigen value is -1.10.  If all of the Eigen values are positive, the matrix 
has a unique solution.  If any Eigen value is negative, the matrix needs to be corrected.  In some 
cases, the matrix will need to be corrected when all of the Eigen values are positive to correct for 
large kriging weights. 

The next step was to fix the correlation matrix.  The parameters for the correlation matrix fixing 
program, fixcorrmat, are below: 

                  Parameters for FIXCORRMAT 
                  ************************* 
 
START OF PARAMETERS: 
corrmat.out                    -file with correlation matrix 
14                             -   number of variables 
1  3                           -   columns for rho, ndata 
0.2                            -minimum Eigenvalue 
4    1 2 3 4                   -prediction variables 
10   5 6 7 8 9 10 11 12 13 14  -data variables 
fixcorrmat.out                 -file for output 
 

The minimum Eigen value is the only subjective parameter that needs to be chosen.  If set too 
low, the resulting weights will not be reliable.  If set too high, the matrix correction will take too 
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long to run.  Usually, it is set high to ensure a good matrix.  We will see later that there is a 
maximum value for the minimum Eigen value. 

The data variables and prediction variables are not used for the optimization.  They are used only 
used for calculating the weights.  The final weights are written to the output screen.  If any weight 
is greater than 0.9, a warning is written as well. 

Figure 2 shows the sensitivity for each variable in the correlation matrix.  The sensitivity is a 
combination of the number of data and how that specific correlation impacts the minimum Eigen 
value.  Figure 3 shows the corrected matrix and the delta between the initial matrix and the cor-
rected matrix.  Note that most of the changes are small, <±0.3.  However, there are a few large 
changes that were made to the correlation matrix.  We want to ensure that the changes were made 
to appropriate correlations in the matrix; i.e. to correlations that had a small number of data or 
correlations that are sensitive (have a large impact on the Eigen values).   

Scatterplots of the correlation delta versus the sensitivity and the number of data are shown in 
Figure 4.  The relationships are where expected.  Correlations that are highly sensitive had a large 
delta and correlations with a large number of pairs have a small delta. 

Interesting plots are shown in Figure 5 and Figure 6.  Figure 5 shows the minimum Eigen value 
for the matrix versus the number of iterations.  The matrix is quickly corrected to have only posi-
tive Eigen values, within 20000 iterations, but 180000 iterations are required before a stable ma-
trix is reached.  Figure 6 shows the maximum weight versus the minimum Eigen value.  The 
maximum weight does not stabilize until around 160000 iterations, at the same time that the 
minimum Eigen value stabilizes. 

The last check done was to see how fixing the correlation matrix impacted the correlation be-
tween the primary variable and the combined secondary variables.  This correlation is important 
when modeling the primary variable with the combined secondary variables in collocated co-
kriging or co-simulation.  Ideally, the correlation will not change as the matrix is corrected.  
Figure 7 shows the correlations between the primary variables and the combined secondary vari-
able that corresponds to the primary variable versus the number of iterations and the minimum 
Eigen value.  As with the weights, the correlations do not stabilize until the minimum Eigen value 
has stabilized.  It is interesting to note that the final correlations between the primary and the 
combined secondary are similar to what is expected from the initial correlation matrix.  For ex-
ample, in the initial matrix, spinner flow has correlations around 0.3 with the secondary variables.  
We would expect the correlation of the combined secondary to be greater than 0.3, but not sig-
nificantly bigger.  The resulting correlation is 0.42. 

Conclusions 

Merging multiple secondary variables is becoming a common practice in geostatistics; however, 
it may be impossible to get a positive-definite matrix in a sparse data setting.  Matrices that are 
not positive definite can be fixed with the methodology presented in this paper.  Correcting the 
matrix has two benefits: (1) it can fix matrices that are not positive-definite and (2) it stabilizes 
the weights from the matrix.  The correlation fixing program iteratively changes correlations 
within the matrix to maximize the minimum Eigen value.  As the minimum Eigen value in-
creases, the matrix becomes more stable.  Most matrices will asymptotically reach a maximum 
minimum Eigen value.  When this has been reached, the matrix can be used for combining the 
secondary variables. 
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The changes made to the correlation matrix are constrained.  Correlations that have a low number 
of data are preferentially changes over correlations that have a large number of data.  In addition 
to this, correlations that have a higher impact on the minimum Eigen value are also changed more 
often than correlations that do not have an impact on the minimum Eigen value.  The example 
presented showed how the program corrects the correlation matrix.  It fixed the matrix and stabi-
lized the weights for combining the secondary variable. 
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Figure 1:  The initial correlation matrix and the number of data used for the calculation. The cor-
relations are on the left and the number of data is shown on the right. 

 

 
Figure 2:  Sensitivity for each correlation coefficient.  Correlations with a high sensitivity have a 
large impact on the minimum Eigen value. 
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Figure 3:  The corrected correlation matrix is shown on the left and the delta from the initial cor-
relation is shown on the right.  The color scale for the delta matrix is from -0.9 → 0.9. 

 

  
Figure 4:  The scatter plots show the change in the correlation coefficient versus the matrix sensi-
tivity and the number of data used for calculating the correlation.  
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Figure 5:  Minimum Eigen value versus the number of iterations. 
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Figure 6:  Maximum kriging weight versus number of iterations and minimum Eigen value. 
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Figure 7:  Correlation between the primary variable and the combined secondary variable that 
corresponds to the primary variable versus the number of iterations and the minimum Eigen 
value. 


